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Parameter sensitivity of noisy chaotic time series

Elmer S. Hung
Massachusetts Institute of Technology, Rm. 39-665, Cambridge, Massachusetts 02139

~Received 26 September 1996!

We examine the sensitivity of noisy time series of data from a chaotic system to changes in the parameters
of the system. The investigation yields two insights:~1! A small fraction of the data contains most of the
information about the parameters.~2! For one-parameter families of systems, there is often a preferred direc-
tion in parameter space governing how easily trajectories of nearby systems shadow each other. A parameter
estimation algorithm is presented that leverages these properties of chaotic systems to yield estimate errors that
decrease as 1/N2, whereN is the number of state samples used.@S1063-651X~97!04507-8#

PACS number~s!: 05.45.1b, 05.40.1j
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How easy is it to distinguish a time series of noisy st
measurements from two slightly different chaotic dynami
systems? It is known that small perturbations in the para
eters of a chaotic system can have dramatic effects on
statistical properties of the system@1#, and that the long term
behavior of slightly different systems can often be eas
distinguished, even in the presence of measurement n
@2#. However, for experimental purposes it is also import
to know how long a system must be observed for change
the system parameters to become recognizable and how
about determining the parameters given a finite series of
servations.

This paper investigates these questions by attemptin
estimate the parameters of one-parameter families of cha
systems given a series of noisy full-state observations. T
idealized problem turns out to be interesting for a numbe
reasons. First, the problem is simple enough that one
closely examine the dynamical mechanisms that affect
sensitivity of state trajectories to changes in the system
rameter@3#. In addition, parameter estimation techniques
potentially useful in aiding recent efforts to apply chao
systems for purposes of control and communication@4# and
may also have applications for high precision measurem
@5#, since chaotic systems can be extremely sensitive to s
parameter variations.

Here is the problem: Suppose that we are given a o
parameter family of mappings,f p(x), wherex is the state
vector of the system,p is a scalar parameter of the syste
and f is assumed to vary continuously withx andp. For a
specific parameter valuep5p0 we are also given a sequenc
of observations $yn%n50

N of a certain state trajector
$xn%n50

N , where

xn115 f p0~xn!

and

yn5xn1en ,

for nP$0, . . . ,N% where theen’s represent measurement e
rors in the data stream. We are interested in estimating
value ofp0 given the data stream$yn%n50

N when f p0 is cha-
otic. For analytical purposes we will first assume that
561063-651X/97/56~1!/235~4!/$10.00
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magnitude of the measurement errors is bounded so tha
eachn, uenu,e for somee.0.

Note that$yn%n50
N represents part of an actual trajectory

f p0 with e measurement errors added in. Thus, if no traj

tory of f p8 follows $yn%n50
N for all nP$0, . . . ,N% within e

error for the parameter valuep5p8, thenp8 cannot be the
actual parameter value of the system that is being obser
In other words, in order to estimate the parameter off p given
a noisy sequence of data$yn%n50

N , we want to know the
values of p for which f p has at least one trajectory@6#,
$ f p

n(z0)%n50
N , that shadows$yn%n50

N within e error for some
z0 , so thatu f p

n(z0)2ynu,e for nP$0, . . . ,N%.
To examine shadowing orbits or trajectories we first ne

to distinguish between two types of chaotic systems:uni-
formly hyperbolicand nonuniformly hyperbolic. Uniformly
hyperbolic systems@7# can be locally decomposed into stab
and unstable spaces that uniformly contract and expand a
exponential rate. It is known that uniformly hyperbolic sy
tems satisfy a structural stability property@7# so that there
exists a one-to-one correspondence between orbits of ne
systems in parameter space. Thus, iff p0 is uniformly hyper-

bolic, then given anye.0 and any orbit,$xn%n52`
` , of

f p0, there exists an orbit off p that shadows$xn%n52`
` within

e for all n for any p sufficiently close top0 . Consequently,
for uniformly hyperbolic systems, there is a limit on th
amount of information about the parameters of the sys
available purely from the dynamics.

However, virtually all physical chaotic systems are n
uniformly hyperbolic, so their orbits are not necessar
shadowed by nearby systems in parameter space. How
most orbits of nonuniformly hyperbolic systems still exhib
local hyperbolicity. There exist subspaces that expand
contract exponentially, but the exponential rates of exp
sion and contraction are not uniformly bounded for eve
iterate along an infinite orbit. Thus we find that some itera
approach hyperbolic degeneracy conditions.

The work of Grebogiet al. @8# demonstrates that awa
from hyperbolic degeneracies, one can iterate locally hyp
bolic finite sections of an orbit with roundoff noise added
and still find close shadowing orbits of the same system.
find, however, that the hyperbolic degeneracies hold the
to performing parameter estimation because they are o
235 © 1997 The American Physical Society
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236 56ELMER S. HUNG
accompanied by a local ‘‘folding’’ in state space and a la
of closely shadowing orbits for nearby systems in param
space. This results in short sections of orbits that are
tremely sensitive to small changes in parameters. In part
lar, we find the following:~1! Most data in a time series o
state observations contribute very little information about
parameters. Only the small amount of data taken fr
stretches of an orbit near a degeneracy really matters.~2! For
one-parameter families of systems, the folding action ne
hyperbolic degeneracy often results in a preferred direc
in parameter space governing how easily orbits of one s
tem shadow orbits of nearby systems in parameter spac

These ideas are most easily illustrated with a o
dimensional example. Consider the family of quadratic m

f p~x!5px~12x!,

for xP@0,1# and pP@0,4#. We first present numerical ex
periments demonstrating some rather surprising shadow
results for the quadratic map. We then attempt to explain
results and use them to develop parameter estimation a
rithms.

Pick p053.9 and iterate an orbit,$ f p0
n (x0)%n50

N , of f p0
starting with the initial conditionx050.3. Numerically, the
resulting orbit exhibits chaotic properties~e.g., positive
Lyapunov exponent!. Now consider the question: ‘‘What pa
rameter values p produce orbits that shadow
$ f 3.9

n (0.3)%n50
N ?’’ We can examine this question numerical

by picking values ofp close to 3.9 and finding the close
shadowing orbits for each value ofp @9#.

In order to measure how closely maps with different p
rameters can shadow the orbit,$ f 3.9

n (0.3)%n50
N , we define

e(N,p) to be the maximal distance between that orbit a
the closest shadowing orbit off p . Let

ê~N,p,p0 ,x0!5 min
zP[0,1]

max
0<n<N

u f p
n~z!2 f p0

n ~x0!u ~1!

and definee(N,p)5ê(N,p,3.9,0.3).
Figure 1~a! shows the result of computinge(N,p) with

respect top23.9 for three values ofN. The threev-shaped
traces in the figure represent plots ofe(N,p) for N561,
N5250, andN51000, progressing inward toward the ver
cal p53.9 axis asN increases. Note the distinct asymmet
of the graph between values ofp greater than 3.9 and les
than 3.9. Maps with higher parameter values (p.3.9) can
apparently shadow the original orbit,$ f 3.9

n (0.3)%n50
N , more

‘‘easily’’ than maps withp,3.9. Plotting a small part of this
graph near the origin and magnifying the horizontal a
@Fig. 1~b!# reveals a sharp transition in the shadowing beh
ior of maps in parameter space. There is a small interva
parameter space forp,3.9 corresponding to maps tha
shadow the original orbit well; however, as one decreases
parameter value, there is a sudden transition to maps
cannot shadow the original orbit closely at all.

We can examine the situation further by keepi
e(N,p) constant at 0.01 and tracking how thev-shaped
curves in Fig. 1~a! vary with N. Specifically, define
a(N).0 and b(N).0 so that I (N)5@3.92a(N),3.9
1b(N)] is the interval in parameter space such th
e(N,p)<0.01. A plot of a(N) and b(N) is shown in Fig.
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1~c!. The plot illustrates two important points:~1! a(N) is
several orders of magnitude smaller thanb(N) for largeN,
illustrating the asymmetry in parameter space.~2! a(N) is
approximately constant for large stretches ofN, but de-
creases in large increments over a small number of iter
that are especially sensitive to parameters.

Related qualitative results concerning the asymmetry
parameter space have previously been proven analytic
@10#. One can also show the following quantitative res
@11#.

Theorem 1:Let ê(N,p,p0 ,x0) be as defined in Eq.~1! for
the quadratic mapf p(x)5px(12x) and define

e~p,p0 ,x0!5 lim
N→`

ê~N,p,p0 ,x0!.

For anygP(0,1), there is a set,E(g),@0,4#, of positive
Lebesgue measure and constantsd.0,C.0, andK.0 such
that the following holds for anyp0PE(g).

~1! f p0 has a positive Lyapunov exponent.

~2! If x0P@0,1#, then

e~p,p0 ,x0!,Cup2p0u1/3

for all pP(p0 ,p01d).
~3! For almost allx0P@0,1#,

e~p,p0 ,x0!.Kup2p0ug

for all pP(p02d,p0).

FIG. 1. e(N,p) measures how close the closest shadowing o
of f p5px(12x) comes to shadowing the orbit$ f 3.9

n (0.3)%n50
N . ~a!

The threev-shaped curves represente(N,p) for N561, N5250,
andN51000.~b! The left side of the graph in part~a! for p,3.9 is
magnified. ~c! Graph of a(N) and b(N), where I (N)5@3.9
2a(N),3.91b(N)] is the maximal parameter space interval su
that pPI (N) implies e(N,p)<0.01.



e
d
h
e

n
ap
f

o

r

e

F

th

n

t the

too
o-

by
a-

an
re-
f
ata
to

ich
s us
t
e of
real
of
m-
ays
-

ten
l
les

-

p

56 237PARAMETER SENSITIVITY OF NOISY CHAOTIC TIME . . .
Thus for the quadratic map there exists a definite param
ric asymmetry so that higher parameters are easier to sha
than lower parameters. The proof for the theorem is rat
involved; however it is helpful to qualitatively explore th
mechanism behind the parametric asymmetry.

For a quadratic map with a positive Lyapunov expone
hyperbolic degeneracies occur for orbit sections that
proach the critical point,c5 1

2. The sharp dips in the graph o
a(N) in Fig. 1~c! occur where the orbit$ f 3.9

n (0.3)%n50
N ap-

proaches the critical point. It turns out that the magnitude
a(N) is governed by how closely the orbit$ f 3.9

n (0.3)%n50
N

comes toc. What happens when an orbit approachesc? Con-
sider a neighborhoodU of initial conditions in state space
nearc. Regions of state space nearc are folded on top of
each other byf p053.9 as shown schematically in Fig. 2~a!.

Figure 2~b! illustrates what the images ofU look like
aftern applications off p for three closely spaced paramete
values, p5p2,p0,p1 . The folded images ofU get
stretched in state space and become offset from each oth
parameter space exponentially fast with increasingn. This
leads to asymmetrical shadowing in parameter space.
example, since the image,f p2

n (U), ‘‘lags behind’’ f p0
n (U),

there is no orbit off p2
that closely shadows orbits off p0

with initial conditions nearc for more thann iterates. The
lack of shadowing for lower parameter values leads to
dips in the graph ofa(N) in Fig. 1~c!. On the other hand,
from Fig. 2~b!, since f p1

n (U) ‘‘leads’’ or overlaps f p0
n (U),

we expect that there are no orbits off p0 which are not shad-

owed closely by at least one orbit off p1
.

This is not the end of the story. Figure 2~c! illustrates that

FIG. 2. ~a! Depiction of how a state-space neighborhoodU,
around c5

1
2 gets folded by the map f p5px(12x) for

p5p053.9. ~b! Images off p
n(U) get offset from each other expo

nentially fast for different values ofp asn increases. This behavior
ultimately leads to asymmetric shadowing in parameter space.~c!
When f p

n(c) returns close toc, offset images are folded back on to
of each other, facilitating shadowing.
t-
ow
er

t,
-
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r in
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if f p0
n (c) returns close toc, then images that lag behind ca

catch up as regions get refolded. In this case, we see tha
forward image ofU under f p0

n11 gets folded back onto the

corresponding forward image ofU under f p2

n11, thus allow-

ing orbits of f p2
to shadow orbits off p0. Numerically, this

effect of lower parameter value shadowing is generally
small to be seen~but it complicates the statement of The
rem 1!.

We now take advantage of the properties illustrated
Fig. 1 to design an algorithm to perform parameter estim
tion on large data sets of chaotic time series@11#. Since only
a few pieces of the data really matter, we quickly sc
through most of the data using a locally linearizing squa
root extended Kalman filter@12#. Once we locate pieces o
data that might be especially sensitive, we analyze this d
using a method based on a Monte Carlo approximation
Bayesian estimation.

For increasing numbers of iteratesN we progressively
eliminate parameter values corresponding to maps wh
could not have produced the observed data. This leave
with a parameter intervalI (N) containing the parameters tha
are consistent with the observed data; however, becaus
the asymmetry in parameter space, we know that the
parameter value is very close to one of the end points
I (N). We choose the appropriate end point to be our para
eter estimate. For example, for the quadratic map we alw
choose the lower end point ofI (N) to be the parameter es

FIG. 3. Results of the parameter estimation algorithm for
trajectories of~a! the Hénon map and~b! the standard map. Vertica
bars delimit the maximum and minimum error results. Triang
indicate log-average errors. The dotted line has a slope of22 cor-
responding to a 1/N2 convergence rate.



be
e
re
f

e
ti
er
tio

tri
.
om

s

ter
Pa-
hat
e
s
tual

oxi-
s

ifi-
go-
tion
on
ates
al-
ith

K.
any
d in
De-
on-
ges
ro-

238 56ELMER S. HUNG
timate so that our estimation error is approximatelya(N) in
Fig. 1~c!. Determining the proper end point to use may
done by testing the algorithm with known parameter valu

Using the estimation algorithm as an analytical tool
veals some interesting results. Below we present results
two different maps, the He´non map@13#

un115un112avn
2 ,

vn115bvn

and the standard map@14#

un115~un1vn1k sinun!mod2p,

vn115~vn1k sinun!mod2p.

Both of these systems are two dimensional whereun and
vn are the scalar state variables. For the He´non system, we
hold parameterb50.3 fixed and attempt to estimate param
eter a (a51.4 is used to generate data!. For the standard
map, we estimate the parameterk (k51 is used to generat
data!. The algorithm is run on numerically generated chao
data: Initial conditions are picked at random, orbits are it
ated, and Gaussian white noise with standard devia
s50.001 is added to each iterate.

Both Hénon and standard maps illustrate parame
asymmetry properties similar to those presented in Fig
@11#. In both cases, numerical results show that orbits fr
maps with lower parameter values tend to be shadowed
orbits from maps with higher parameters but not vice ver
m
ri
so

uit
s.
-
or

-

c
-
n

c
1

by
a.

In Fig. 3 we show the result of applying the parame
estimation procedure to a set of 10 different trajectories.
rameter values are eliminated if there is no trajectory t
shadows the data withine58s. The results, however, ar
extremely insensitive toe because shadowing propertie
transition rapidly for parameter values less than the ac
parameter value@see, e.g., the sharp slope ofe(N5250,p) in
Fig. 1~b! for p23.9,21.831026#.

Note that the estimation accuracy decreases appr
mately as 1/N2 as N gets large. If the accuracy gain wa
purely statistical, the gain would be at most 1/AN @5#. Thus,
the dynamics of the systems in question contribute sign
cantly to the improvement in estimation accuracy. The al
rithm is also much superior to standard parameter estima
techniques like the extended Kalman filter, which relies
local linearization and has divergence problems near iter
where folding is important. For example, the extended K
man filter is not able to produce parameter estimates w
accuracy better than approximately 1026 on average for the
Hénon and standard maps examples shown in Fig. 3@11#.
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