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Parameter sensitivity of noisy chaotic time series
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We examine the sensitivity of noisy time series of data from a chaotic system to changes in the parameters
of the system. The investigation yields two insights} A small fraction of the data contains most of the
information about the parametef®) For one-parameter families of systems, there is often a preferred direc-
tion in parameter space governing how easily trajectories of nearby systems shadow each other. A parameter
estimation algorithm is presented that leverages these properties of chaotic systems to yield estimate errors that
decrease as [W?, whereN is the number of state samples usgg{1063-651%97)04507-9

PACS numbd(s): 05.45+b, 05.40:+]j

How easy is it to distinguish a time series of noisy statemagnitude of the measurement errors is bounded so that for
measurements from two slightly different chaotic dynamicaleachn, |e,|< e for somee>0.
systems? It is known that small perturbations in the param- Note that{yn}w=o represents part of an actual trajectory of
eters of a chaotic system can have dramatic effects on thﬁpo with e measurement errors added in. Thus, if no trajec-

statistical properties of the systdt], and that the long term N -
behavior of slightly different systems can often be easilytory of fpr follows {yn}n—o for all ne{0, ... N} within e

distinguished, even in the presence of measurement noi&"or for the parameter valye=p’, thenp’ cannot be the

[2]. However, for experimental purposes it is also importan@2ctual parameter value of the system that is being observed.

to know how long a system must be observed for changes iff! Other words, in order to estimate the parameteff,afiven

the system parameters to become recognizable and how to onoisy sequence of da/,}\_o, we want to know the

about determining the parameters given a finite series of obalues of p for which f, has at least one trajectof],

servations. {fp(z0)}n=0. thatshadows{y,}\_, within € error for some
This paper investigates these questions by attempting tg), so that|fB(Zo)—yn|<f for ne{0, ... N}.

estimate the parameters of one-parameter families of chaotic 1o examine shadowing orbits or trajectories we first need

systems given a series of noisy full-state observations. Thig, distinguish between two types of chaotic systemnsi-

idealized p(oblem turns out to be'interesting for a number Oﬁormly hyperbolicand nonuniformly hyperbolic Uniformly

reasons. First, the problem is simple enough that one cag nerholic system7] can be locally decomposed into stable

closely examine the dynamical mechanisms that affect th‘eaind unstable spaces that uniformly contract and expand at an

systems for purposes of control and communicafi$inand : e .
may also have applications for high precision measuremenyStems in parameter space. Thusifis uniformly hyper-
[5], since chaotic systems can be extremely sensitive to smafiolic, then given anye>0 and any orbit{x,},- .., of
parameter variations. fp,: there exists an orbit df; that shadowsx,},— _.. within

Here is the problem: Suppose that we are given a oneg for all n for any p sufficiently close tagp,. Consequently,
parameter family of mappingg,,(x), wherex is the state  for uniformly hyperbolic systems, there is a limit on the
vector of the systeny is a scalar parameter of the system, amount of information about the parameters of the system
andf is assumed to vary continuously withandp. For a  available purely from the dynamics.
specific parameter valye= p, we are also given a sequence  However, virtually all physical chaotic systems are not
of observations{y,}h_, of a certain state trajectory uniformly hyperbolic, so their orbits are not necessarily
{xn}ﬁzo, where shadowed by nearby systems in parameter space. However,

most orbits of nonuniformly hyperbolic systems still exhibit
Xn+1:fpo(xn) local hyperbolicity. There exist subspaces that expand or
contract exponentially, but the exponential rates of expan-
sion and contraction are not uniformly bounded for every
iterate along an infinite orbit. Thus we find that some iterates
approach hyperbolic degeneracy conditions.

The work of Grebogiet al. [8] demonstrates that away
from hyperbolic degeneracies, one can iterate locally hyper-
forne{0, ... N} where theey’s represent measurement er- o|ic finite sections of an orbit with roundoff noise added in
rors in the data stream. We are interested in estimating thgnqg still find close shadowing orbits of the same system. We
value ofp, given the data streafy,}ty_o whenf, is cha-  find, however, that the hyperbolic degeneracies hold the key
otic. For analytical purposes we will first assume that theto performing parameter estimation because they are often

and

yn:Xn+eny
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accompanied by a local “folding” in state space and a lack

. . . = 0.01 = 001
of closely shadowing orbits for nearby systems in parameter 2 2z N=250 e
space. This results in short sections of orbits that are ex- §0-008 go‘oos
tremely §ensitive to small changes in parameters. In particu- £ 0,006 5 0,006
lar, we find the following:(1) Most data in a time series of ° s
state observations contribute very little information about the g %% g 0004
parameters. Only the small amount of data taken from go_oog go_m
stretches of an orbit near a degeneracy really matt2rsor 3 i .
one-parameter families of systems, the folding action near a I 210® 1 510°-110° 0 510® 0
hyperbOIIC degeneracy often results in a preferred direction Parameter deviation: p-3.9 Parameter deviation: p-3.9
in parameter space governing how easily orbits of one sys- @ ®
tem shadow orbits of nearby systems in parameter space. o
These ideas are most easily illustrated with a one- g :gz ]
dimensional example. Consider the family of quadratic maps £
2
2 j0
fo(X) = pX(1—X), 5 oc ]
(=N
. . s 10° 4
for xe[0,1] andpe[0,4]. We first present numerical ex- £ 107 4
periments demonstrating some rather surprising shadowing £ qg° M.
results for the quadratic map. We then attempt to explain the 0 250 500 750 1000 1250 1500
results and use them to develop parameter estimation algo- N (Number of samples used)
rithms. ©
Pick po=3.9 and iterate an orbil{,fgo(xo)},ﬁ':o, of fp, . _
starting with the initial conditionx,=0.3. Numerically, the FIG. 1. e(N,p) measures how close the closest shadowing orbit

resulting orbit exhibits chaotic propertie@.g., positive ©f fp=PX(1—X) comes to shadowing the orkit3 (0.3)}— - (a)

Lyapunov exponeit Now consider the question: “What pa- 1he threev-shaped curves represeefN,p) for N=61, N=250,

rameter values p produce orbits that shadow andN_z_lOOO.(b) The left side of the graph in paf&) for p<3.9 is

{f§9(0.3)}yzo?” We can examine this question numerically magnified. (c) Gra.ph of a(N.) and b(N), where '(N)=[3'9

by picking values ofp close to 3.9 and finding the closest —a(N),3.9+b(N)] is the maximal parameter space interval such
yp . 9 . ) 9 thatpe I (N) impliese(N,p)=<0.01.

shadowing orbits for each value pf[9].

In order to measure how closily mapﬁ with dlffere.nt pa'1(c). The plot illustrates two important point§l) a(N) is
rameters can shadow the orbfti3(0.3)jq_o, we define  goyaral orders of magnitude smaller tHaN) for largeN,
e(N,p) to be the m_aX|maI_d|stance between that orbit a”qllustrating the asymmetry in parameter spa®. a(N) is
the closest shadowing orbit 6f,. Let approximately constant for large stretches Nf but de-

N _ N N creases in large increments over a small number of iterates
e(N,p,po.Xo)= min  max [f3(z)=f3 (xo)| (1) that are especially sensitive to parameters.

ze[04] O=n=N Related qualitative results concerning the asymmetry in

parameter space have previously been proven analytically

and definee(N,p)=¢(N,p,3.9,0.3). . -
Figure 1a) shows the result of computing(N.p) with H% One can also show the following quantitative result

respect tgp— 3.9 for three values ol. The threev-shaped
traces in the figure represent plots &fN,p) for N=61,
N= 250, andN= 1000, progressing inward toward the verti-
cal p=3.9 axis asN increases. Note the distinct asymmetry .
of the graph between values pfgreater than 3.9 and less €(P,Po.Xo) = lim e(N,p,po.Xo).
than 3.9. Maps with higher parameter valugs>@3.9) can N=e

apparently shadow the original orb{tf5«0.3)}\_,, more

iy ; : . For anyye(0,1), there is a setz(y)C[0,4], of positive
easily” than maps withp<<3.9. Plotting a small part of this
graph near the origin and magnifying the horizontal axiSLebesgue measure and constaiiis, C>0, andK>0 such

; o ; that the following holds for anyge E(7).
[Fig. 1(b)] reveals a sharp transition in the shadowing behav (1) Tp, has a positive Lyapunov exponent.

ior of maps in parameter space. There is a small interval in
parameter space fop<3.9 corresponding to maps that (2 If Xoe[0,1], then
shadow the original orbit well; however, as one decreases the
parameter value, there is a sudden transition to maps that €(P,Po,X0) <C|p—po
cannot shadow the original orbit closely at all.

We can examine the situation further by keepingfor all pe(pg,po+ ).
e(N,p) constant at 0.01 and tracking how tiveshaped (3) For almost allx,[0,1],
curves in Fig. 1a) vary with N. Specifically, define
a(N)>0 and b(N)>0 so that I(N)=[3.9-a(N),3.9 €(P,Po,X0)>K[p—po|”
+b(N)] is the interval in parameter space such that
e(N,p)=<0.01. A plot ofa(N) andb(N) is shown in Fig. for all pe (pg— 4,po)-

Theorem 11 et e(N,p,py.X,) be as defined in Eq1) for
the quadratic mag,(x) =px(1—x) and define

|1/3
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if fBO(C) returns close ta, then images that lag behind can

catch up as regions get refolded. In this case, we see that the
forward image ofU underf'r]o+l gets folded back onto the

corresponding forward image &f underf“fl, thus allow-
ing orbits of f, to shadow orbits of , . Numerically, this

effect of lower parameter value shadowing is generally too
small to be seerfbut it complicates the statement of Theo-
rem 1.

We now take advantage of the properties illustrated by
Fig. 1 to design an algorithm to perform parameter estima-
tion on large data sets of chaotic time sefig$]. Since only
a few pieces of the data really matter, we quickly scan
through most of the data using a locally linearizing square-
root extended Kalman filterl2]. Once we locate pieces of
data that might be especially sensitive, we analyze this data
using a method based on a Monte Carlo approximation to
Bayesian estimation.

For increasing numbers of iteratéé we progressively
eliminate parameter values corresponding to maps which
could not have produced the observed data. This leaves us

FIG. 2. (a) Depiction of how a state-space neighborhddd
around c=3 gets folded by the mapf,=px(1—x) for
p=po=3.9. (b) Images oﬁg(U) get offset from each other expo-
nentially fast for different values gf asn increases. This behavior
ultimately leads to asymmetric shadowing in parameter spage.
Whenfg(c) returns close te, offset images are folded back on top

with a parameter interval N) containing the parameters that
are consistent with the observed data; however, because of
the asymmetry in parameter space, we know that the real
parameter value is very close to one of the end points of
I(N). We choose the appropriate end point to be our param-
eter estimate. For example, for the quadratic map we always

of each other, facilitating shadowing. choose the lower end point ®(N) to be the parameter es-

Thus for the quadratic map there exists a definite paramet-
ric asymmetry so that higher parameters are easier to shadow
than lower parameters. The proof for the theorem is rather
involved; however it is helpful to qualitatively explore the
mechanism behind the parametric asymmetry.

For a quadratic map with a positive Lyapunov exponent,
hyperbolic degeneracies occur for orbit sections that ap-
proach the critical poini;= 1. The sharp dips in the graph of
a(N) in Fig. 1(c) occur where the orbiff34(0.3)}\_, ap-
proaches the critical point. It turns out that the magnitude of
a(N) is governed by how closely the orbff§ 0.3)}h_,
comes tac. What happens when an orbit approact@<on-
sider a neighborhood of initial conditions in state space
nearc. Regions of state space neamre folded on top of
each other byf,, _3¢as shown schematically in Fig(&.

Figure Zb) illustrates what the images df look like
aftern applications off , for three closely spaced parameter
values, p=p_<po<p,. The folded images ofU get
stretched in state space and become offset from each other in
parameter space exponentially fast with increasingrhis
leads to asymmetrical shadowing in parameter space. For
example, since the imagé, (U), “lags behind” fBO(U),
there is no orbit off, that closely shadows orbits df,
with initial conditions nearc for more thann iterates. The
lack of shadowing for lower parameter values leads to the
dips in the graph of(N) in Fig. 1(c). On the other hand,
from Fig. 2b), sincef;  (U) “leads” or overlapsfgo(U),
we expect that there are no orbitsf@; which are not shad-
owed closely by at least one orbit f .

Parameter estimate error

Parameter estimate error
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FIG. 3. Results of the parameter estimation algorithm for ten
trajectories ofa) the Heon map andb) the standard map. Vertical
bars delimit the maximum and minimum error results. Triangles
indicate log-average errors. The dotted line has a slopedfcor-

This is not the end of the story. FigurécRillustrates that responding to a N? convergence rate.
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timate so that our estimation error is approximat@{yN) in In Fig. 3 we show the result of applying the parameter
Fig. 1(c). Determining the proper end point to use may beestimation procedure to a set of 10 different trajectories. Pa-
done by testing the algorithm with known parameter valuesrameter values are eliminated if there is no trajectory that

Using the estimation algorithm as an analytical tool re-shadows the data withia=8c-. The results, however, are
veals some interesting results. Below we present results faixtremely insensitive toe because shadowing properties
two different maps, the Hen map[13] transition rapidly for parameter values less than the actual
parameter valugsee, e.g., the sharp slopeafiN=250p) in
Fig. 1(b) for p—3.9<—1.8x 10" °].

Note that the estimation accuracy decreases approxi-
mately as IN? as N gets large. If the accuracy gain was
and the standard mdfi4] purely statistical, the gain would be at most/W/ [5]. Thus,
the dynamics of the systems in question contribute signifi-
cantly to the improvement in estimation accuracy. The algo-
rithm is also much superior to standard parameter estimation
techniques like the extended Kalman filter, which relies on
Both of these systems are two dimensional whegeand local linearization and has divergence problems near iterates
v, are the scalar state variables. For thenete system, we Where folding is important. For example, the extended Kal-
hold parameteb=0.3 fixed and attempt to estimate param-man filter is not able to produce parameter estimates with
etera (a=1.4 is used to generate datdor the standard accuracy better than approximately f0on average for the
map, we estimate the parameketk=1 is used to generate Henon and standard maps examples shown in Fig.1}

data).. Th? algorlth_m IS Tun on numerically generat.ed cha_ot|c The author wishes to thank H. Abelson, N. Cohen, K.
data: Initial conditions are picked at random, orbits are iter-

ated, and Gaussian white noise with standard deviatio#omans‘ A. S@pas, G. Sussman,. and J. Wisdom, for.man-y
o=0.001 is added to each iterate. useful suggestions. Support for this research was provided in

Both Henon and standard maps illustrate parametricP@'t by the Advanced Research Projects Agency of the De-

asymmetry properties similar to those presented in Fig. partment of Defense under Office of Naval Research Con-
[11]. In both cases, numerical results show that orbits frorfract No. N00014-92-J-4097. The author also acknowledges

maps with lower parameter values tend to be shadowed bf)ynancial support by the Air Force Graduate Fellowship Pro-
orbits from maps with higher parameters but not vice versadram.

Ups1=Up+1—av?,

Un+1= Doy

Up+1=(Up+v,+ksinu,)mod2s,

Uni1= (v, tksinu,)mod2sr.
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